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The Hartmann air jet generator (Hartmann 1939) is a sound wave generator in 
which the sound is generated by oscillations of a shock developed in an over- 
expanded air jet by means of a blunt body: a resonator. A theory for the insta- 
bility mechanism is advanced, and it is found that the results calculated from 
the theory are in good agreement with the experimental observations. 

1. Introduction 
The Hartmann generator is made of an axially symmetrical convergent 

nozzle and a resonator (figure 1).  Axially symmetrical resonators of different 
size and form can be used. The resonator with bore shown in figure 1 was used 
by Hartmann (1939) to obtain a high acoustical efficiency of the generator. 
During the investigations presented here plane resonators, i.e. resonators without 
bore, but with plane terminal surface, were principally used. 

The frequency and the acoustic power of the generator depends on the dia- 
meter of the nozzle d,, the resonator type, the resonator/nozzle ratio d,ld,, 
the distance from nozzle to resonator xi-es and on the stagnation pressure po  of 
the air supplied to the generator. 

Resonator 

----_---- 

FIGURE 1. Hartmann generator (resonator with bore). 
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In  the free supersonic air jet, i.e. the air jet without resonator, a shock will 
be created at some distance from the nozzle by convergence of Mach lines. This 
Mach shock is stable, but if a resonator is inserted into the jet at such a position 
that a blunt body shock-the resonator shock- is produced in the supersonic 
jet upstream of the position where the Mach shock is created in the free jet, 
then shock instability may occur. 

Free jet boundary 
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FIGURE 2. Flow pattern in the Hartmann generator. 

2. Experimental investigations 
The experimental investigations of the Hartmann generator were carried out 

with a 12.0mm nozzle. A stagnation pressure po determined by p,/po = 0.261 
(pB = atmospheric pressure) was chosen for all experiments. 

When the distance between nozzle and resonator xres, and thus the distance 
between nozzle and shock XSh, exceeds a certain value the shock produces periodic 
oscillations of large amplitude. For the case of a 12.3mm resonator with 
12.0 mm bore the course of one oscillation is shown in figure 3, plate 1. The pic- 
tures show that between the oscillating resonator shock and the bottom of the 
resonator a secondary shock wave travels. Measurement of the pressure oscilla- 
tion a t  the bottom of the resonator with a quartz transducer also indicates that 
reflexion of a shock wave occurs. 

Instability of the same type is found with plane resonators. The only difference 
is an increase of frequency and a decrease of shock amplitude. 

If xres is smaller than the above-mentioned limit the large amplitude shock 
oscillations do not occur, and it is then found that the shock form and position 
are almost independent of whether a resonator with or without bore is used. 
Further, the angle 6’ (figure 1) is unimportant if the position of sonic point at the 
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resonator surface is at the sharp front edge of the resonator. This implies that 6 
must not be too large. The parameter which is decisive for the shock form and 
position is the resonator diameter at sonic point. This is equivalent to what is 
found for blunt body shocks in parallel flows (Vaglio-Laurin 1962). 

The shock-resonator positions are given in figure 4 for plane resonators of 
different diameters. The shock positions x,h are measured in the axis from nozzle 

6 12 
Nozzle-shock distance, xSh (mm) 

FIGURE 4. Shock-resonator positions for plane resonators of different diameters inside 
region of stability and weak instability (mean shock positions in case of unstable 
shocks). 

to shock. The curves are shown to the point where large amplitude shock oscilla- 
tions start. During the investigations with plane resonators, however, it  was 
noticed that weak instabilities can occur inside the apparently stable region. The 
amplitude of oscillation for the resonator shock a t  these instabilities is very 
small. In  the subsonic region behind the resonator shock small pressure oscillations 
are produced and these oscillations are able to create a weak oscillating oblique 
shock in the outer part of the jet downstream of the resonator shock (figure 5, 
plate 1) where the velocity has again become supersonic (figure 2). 

With a 7.0mm plane resonator, pressure oscillations at the resonator plane 
were registered with a built-in quartz transducer. Oscillograms of the pressure 
oscillations are shown in figure 6.  It is found that the pressure oscillations may be 
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composed by two superimposed frequencies, but normally one frequency is domi- 
nating. The dominating frequencies are shown in figure 7 (a) .  The curve of lowest 
frequency corresponds to large amplitude shock oscillations (xres > 18.1 mm) 
and the other frequency curves to small amplitude shock oscillations. The cor- 
responding pressure oscillations at  the resonator plane are shown in figure 7 (b ) .  

It is reasonable to assume that the mechanism of instability is a resonance 
phenomenon. In the central region of the jet, the resonator shock is practically 

(6)  (C) 

FIGURE 6 .  Oscillograms of pressure oscillations a t  the resonator plane for 7.0 mm plane 
resonator (x-sweep: 50 psecldiv). (u) z,,,, = 14.8 mm, v,, = 35 kc/s; ( b ) ,  ( c )  x,,, = 18.1 mm 
(jump position), u, = 21.5, 7.24 kc/s. 

a normal shock-at least if it  is not too near to the nozzle (figure 8, plate 2)- 
and during its oscillations nearly plane waves must be emitted into the subsonic 
region between resonator and shock. These waves will be reflected from the plane 
terminal surface of a plane resonator or from the bottom of the bore in case of a 
resonator with bore. When the waves return to the shock adaptation is necessary 
for the shock oscillation to continue. The time T used for a wave to travel from the 
shock to the reflecting surface and back to the shock depends on the distance 
between shock and reflecting surface and accordingly the resonance frequencies 
must be different for a plane resonator and a resonator with bore and for plane 
resonators of different diameters. 

The over-expanded supersonic air jet in the Hartmann generator is character- 

FIGURE 3. The course of one oscillation in the Hartmann generator with 12.3 mm resonator 
with bore 12.0 x 12.0 mm. v, = 4.5 kc/s, x,,, = 16.0 mm. 
FIGURE 5. The course of one oscillation in the Hartmann generator with 6.5 mm plane 
resonator (weak instability). Amplitude of oscillation for the rrsonator shock c. 0-2 mm. 
U, = 22 kc/s, x,,, = 17.6 mm. 
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FIGURE 3 
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Plate 1 

FIGURE 5 

(Facimg p .  144) 



Journal of Fluid Mechanics, Vol. 30, part 1 Plate 2 

FIUUILE 8. Schlirren photos of' generator M i t h  6.0 mm planc r,ssonator. ( a )  ,rreb = 5.1 mm; 
(6) I',,, = 9.5 mm; ( c )  x',,, = 13.5 mm; ( d )  x,,, = 17.5 mm. 
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- 10 15 20 25 
Nozzle-resonator distance, z,,, (mm) 

Nozzle-resonator distance, zr,,(mm) 
FIGURE 7. (a) Dominating mean frequencies v,,, for 7.0 mm plane resonator measured 
at  the resonator plane. ( b )  Pressure oscillations at  the resonator plane. 

Distance from nozzle, x,/d,, 

FIGURE 9. Mach number in the axis of the free jet. 
10 Fluid Mech. 20 
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ized by a varying Mach number in the direction of the axis as well as in cross- 
sections perpendicular to the axis: The Mach number in the axis of the free jet 
used for the investigations is shown in figure 9, and in figure 10 it is given for some 
cross-sections of the jet. It is seen that in the region near to the axis the Mach 
number varies essentially only in the axial direction and here the flow is nearly 
parallel. 

For distances from nozzle to shock below about 7-8,mm (xsh/dn r 0.6), i.e., 
for Mach numbers in front of the shock below about 2.0, resonance phenomena 

Mach number, M ,  

Mach numbers 
Measured 

0.5 0 0.5 
Radial distance from axis, T/dn 

FIGURE 10. Measured and computed Mach numbers in cross-sections of the free jet. 

have been registered only in a few cases and in these cases strong resonance 
never occurs. 

The maximum Mach number in the axis of the free jet for the case treated was 
about 2.7-when this Mach number is reached the Mach shock occurs. The 
Mach shock is displaced in the downstream direction if the stagnation pressure 
p,, is increased. 

Thus resonance phenomena can be expected to occur for Mach numbers in 
front of the resonator shock given by 2.0 < M, < M,,,, N 2-7. 

3. Theory of instability 
3.1. The instability model 

A complete theoretical treatment of the instability problem is extremely difficult 
and a simplified model is used. As mentioned above, the flow in the region near to 
the generator axis can be expected to be of fundamental importance for the 
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occurrence of resonance and therefore only this part of the jet is considered. To 
further simplify the problem the case of a generator having a plane resonator is 
treated. 

In  the instability model the Mach number of the supersonic jet is thought to 
change only in the flow direction (figure 9). The jet is directed a t  the plane reson- 
ator. The resonator shock is a normal shock, the equilibrium position (detach- 

-1  

- 2-- 

1 

G------ 

M 

FIGURE 11. Stagnation flow. 

ment distance) of which is determined by the resonator diameter. In  the central 
region between the shock and the resonator the flow is a stagnation flow 
(figure 11). 

If the normal shock carries out small oscillations in the axial direction, the 
pressure and velocity perturbations behind the shock will move as plane waves 
downstream to the resonator and after reflexion return to the shock. To find 
the conditions of resonance it is necessary (i) from the normal shock relations to 
compute the pressure and velocity perturbations behind the oscillating shock, (ii) 
to deduce the wave equation for perturbations in a stagnation flow and to 
find the solutions to this equation. 

10-2 
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3.2. Perturbations behind an oscillating normal shock 

If the normal shock oscillates sinusoidally a t  a frequency w the displacement of 
the shock from the mean position is given by 

Ax = 1 sin wt. 

In  the mean position the Mach number just in front of the shock is Jfl and the 
static pressure is pl .  If the shock oscillates with a small amplitude 1 the Mach 
number in front of it is 

M ( x )  = MI + 2 I sin wt, 

( 1 )  

( 2 )  
dM 
ax 

and the strength of the shock is given by 

(3) 
W l  

MI,,, = nll + d M 1 1  sin wt - - cos wt = 3ll + CAM. 
ax a1 

(The index sh denotes that the system of co-ordinates is attached to the shock.) 

Pressure perturbation 

The static pressure just in front of the oscillating normal shock is given by 

p ( x )  = p 1  + 2 1 sin wt. (4) 

With the equations for adiabatic flow, the normal shock equations (Liepmann 
& Roshko 1957), and the assumption of small amplitudes, 1, it  is found that the 
static pressure just behind the shock is 

The static pressure behind the shock can be regarded as composed of a stationary 
part pzs  and a non-stationary part pza 

Pz = P2s + 132%. 

Excluding small second-order terms and using (y  - 1)/2y < M,Z it  is found that 

where a1 is the velocity of sound in front of the shock. 

Velocity perturbation 

from equation (3) and the normal shock equation 
The velocity perturbation behind the oscillating normal shock can be found 

In  the system of co-ordinates fixed to the resonator the velocity perturbation is 

uz = Uz,sh + d cos wt, 
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and expressing u2 as the sum of a stationary part uZs and a non-stationary part 
U27l 

i t  is found that 

In  the Hartmann generator resonance is registered for 2.0 < Ilclll < 2.7 and 
therefore the first term in equation (8) is insignificant compared with the last 
term. Accordingly 

Ugn = wl cos ut. (9) 

3.3. The wave equation for plane perturbations in a stagnationjow 

It is convenient for the theoretical computations to use a system of co-ordinates 
with starting-point in the centre of the resonator plane and with the x-axis 
directed upstream (figure 11). This implies that the axial flow velocities become 
negative. The equations for axially symmetrical flow (Schlichting 1960) are used, 
and the circumferential velocity is put equal to zero. 

As the thickness of the boundary layer at the resonator plane is very small 
compared with the distance from resonator to shock it can be neglected. In  the 
region near the axis the frictional forces occur only in the boundary layer at the 
resonator, so that the frictional terms in the Navier-Stokes equations can there- 
fore be omitted, giving 

and 

while the equation of continuity is 

9+- (pu )+ - (pv )+ -  a a PV = 0. 
at ax ar r 

As the Mach number in front of the shock ]MII > 2.0 in the regions where 
resonance normally occurs, the Mach number just behind the shock 1H21 < 0.58, 
and therefore the compressibility effects are small in the stationary stagnation 
flow between shock and resonator, and the flow velocities found for incompres- 
sible flow can be used for the stationary basic flow (Schlichting 1960; Vaglio- 
Laurin 1962) : 

For this flow equations (10) and (1  1)  give 

us = ax, v, = -gar. 

Now a plane perturbation (index p )  moving along the x-axis and given by the 
velocity potential 

up = -a$lax ( 1 7 4  

is superposed on the stagnation flow (Stewart & Lindsay 1930): 
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From equation (10) it is found that 

In  this equation p can be regarded as constant and by first integrating with 
respect to x and then differentiating with respect to t and assuming that 

IWI 9 Ia4/a4 (19) 

it  is found that 

The static pressure p and the density p have stationary and non-stationary 
components: 

p = Ps+P*, P = PS+PP. 

Equation (12) can be divided in a stationary component associated with the 
basic flow and a non-stationary component: 

The basic flow component contained in the first square bracket is identically 
zero and the remainder of the equation can be rewritten 

+(P,+P 1- - - 0. (24) ax 

The compressibility of the stationary basic flow cannot be neglected when it 
appears in association with the perturbation, because although it is small it is 
of the same order of magnitude as the density perturbation pp. Accordingly the 
square bracket in equation (24) must be transformed with equation (12) before 
equations (13) and (14) can be inserted: 

aPP aPP aPs aP, 
- + (US+UP) - + zc - + v,- at ax ax ar 

In  the region near to the axis us is small and thus also ap,/ar is small. Further 
the perturbation introduced by equation (17a) has no r-component, which gives 
apP/ar = 0. Equation (25) can now be reduced to 
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With c2 = app/app equations (15)  and (18)  give 

Equation (20), with equations (15) ,  (26) ,  (27)  and ps II p, gives 

which is the wave equation for a stagnation flow. 

the form 
The coefficients in equation (28)  depend only on x and the solutions must have 

q5 = edF(x), (29)  

and the complete solution can be written 

$ = eut(CAFA + CBF’), 

where CA and C, are constants. Introducing equation (29)  into equation (28)  
the latter is reduced to an ordinary differential equation of hypergeometric 
type (Kamke 1942), 

d2F dF ( C ~ - C ~ ~ X ’ ) - - ~ ( C + ~ ) O Z ~ - - C T ~ F  = 0. 
ax2 ax 

With 
and 
equation (31)  is transformed into 

p = - a/a = - (a, + ia4)/a = q + it, 
2 x  = ( m / c )  + 1, 

A solution to this equation is given by 

O0 p(p+ 1)  ... (p+n  - l ) q ( q + l )  ... (q+n- 1)  
r(r+ 1)  ... (r+n- 1 )  xn, (35)  n! FA(p,q7r,x) = ’+ 

n=l 

where p + q + l = 2 - 2 p ,  r = l - p ,  p q = p 2 ,  

from which = +-p+(&-p)k 

Then equation (36) can be written 
p2(2+p2-2p)  ... ((p-n)2+2p-n) 

’ A h )  = f x X” 
n=l n ! ( l - p ) ( 2 - p )  ... (m-p) 

where An-l denotes the (n - 1)th term of the series and A,  = 1. 
A second solution is 

FB(x) = x 1 - ~ F ( p - ~ + l , q - r + l , 2 - ~ , x )  
O0 

=x’+ x @+p)(p+p+ 1)  ... (p+p+n-  1)  
n=l n! 
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which can be rewritten 

where BnP1 denotes the (n - 1)th term and B, = 1 .  

3.4. Equations for determination of resonance 

A plane perturbation was defined by the velocity potential equation (17a) .  
The corresponding pressure potential is found from equations (15) and ( 1 8 )  

As lax/cl is small and p N constant, the equation can be integrated to 

The complete solution to the wave equation gives 

from which 

(38) 

(39) 

and 

(41h (42) 
From equations (36) and (37) it  is found that 

where AAP1 denotes the (n - 1)th term and A; = 1, and 

where BkPl denotes the ( n  - 1)th term and Bi = 1. 
In  forming the wave equation (28) it  was required that lax1 > l8q5/8xl. From 

this an estimate of the constant C can be obtained. 
From equation (40) the disturbance caused by a downstream moving perturba- 

tion-the A -componentand by the corresponding upstream moving perturba- 
tion developed by reflexion at the resonator-the B-component-can be found 
at any point inside the subsonic region between shock and resonator. 
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If a perturbation moves from the resonator upstream to the normal shock 
i t  will cause the shock to niove. However, normally the pressure and velocity 
perturbation behind the unstable shock cannot be satisfied by the upstream 
moving perturbation alone and therefore a downstream moving perturbation is 
produced (reflected) by the shock. As the boundary conditions at the shock are 
different from those at the resonator, equation (40) is not valid there, but the 
total disturbance from the upstream moving perturbation (B-component) and 
the downstream moving perturbation produced by the shock (A-component) 
is given by 

from which 

where k is a factor expressing the ratio between the amplitude of the down- 
stream moving wave and the incident upstream moving wave. 

The amplification factor k must be determined from the boundary conditions 
at the shock. The velocity and pressure perturbations immediately behind the 
shock can be found from the real parts of up and p,  (equations (17a) and (38)) 
as well as from ugn andp,, in the shock equations (9) and (6). As the real part of 
up contains a cosine as well as a sine term the oscillation of the shock must be 
the sum of a sine and a cosine oscillation, and equations (9) and (6) must be 
rewritten to take account of this: 

Ax = la sin wt + 1, cos wt, (48) 

from which up, and p2, are found. 
Just behind the shock we have 

c = a2, ax le  = M2, p = p2. 

These are introduced into equations (36), (37), (38), (43) and (44). According 
to equation (32), a is complex. The real component a; is a damping term. whereas 
the imaginary component gg gives the frequency of oscillation, which must be 
equal to w .  Here the damping is neglected and thus ur = 0 and ,u = it = - iw/a. 

The coefficients to cosine and sine in the equations 

Reu, = u~~ and Repp = pzn (491, (50) 

From the equations 
that 

give four equations for the determination of possible resonance frequencies [, 
the factor of amplification k,la and 1,. 

for the normal shock and for adiabatic flow it is found 

Further the quantities 
La = wl,/C and L, = wl,/C 

are introduced. 
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Then equation (49) gives for the coefficients of the cosine 

and for the coefficients of the sine 

and equation (50) gives for the coefficients of the cosine 

and for the coefficients of the sine 

These are the final equations for determination of resonance frequencies. If at 
a certain position of resonator and shock La and Lb are computed (as functions of 
E )  and inserted into equations (53)  and ( 5 4 )  each of these equations will give k 
as a function of 6, and where the functions are equal to the same value, a solution 
to the system of equations is found. 

A perturbation, which moves downstream from the shock to the resonator 
and is reflected there returns to the shock after a time 

After reflexion at the shock the amplitude of the perturbation, which has the 
frequency of resonance w ,  will be multiplied by the factor k. If Ikl < 1 the ampli- 
tude will decrease at each reflexion unless an impressed perturbation of frequency 
w and of sufficiently large amplitude and suitable phase is also present. 

As the shock position changes during the oscillation the value of 7 also oscil- 
lates, but for small amplitudes of shock oscillation this can be disregarded. 

Experimentally large-amplitude as well as small-amplitude shock oscillations 
have been found. Calculations carried out from the theory (see $3 .5 )  show that 
- 1 5 k < 1. Thus an impressed perturbation must exist, but how it arises is 
not explained. A possible mechanism of generation will now be outlined. 

The resonance oscillations in the central part of the jet can be expected to 
make the shock oscillate about a mean position as shown in figure 12 (a). 

When the resonator shock is stable its position is found to be determined 
essentially by the sonic line between the edge of the shock and the sonic shoulder 
of the resonator (figure 2 ) .  A small axial change in the position of the resonator 
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does not affect the form of the shock significantly, but causes a small change 
in its axial position. In  the ihstability theory the perturbation introduced 
by equation (17a)  was only x-oriented, i.e. a radial component of the disturbance 
superposed on the basic flow was not considered, but such a component must 
exist, which is proved by the radiation of acoustic energy from the resonant 
system. When such radial waves reach the above-mentioned sonic line its posi- 
tion is changed, and thus the position of the shock is changed. If the waves are 
sinusoidal it can be expected that the shock produces sinusoidal oscillations 
around a mean position as shown in figure 12 ( b ) ,  superposed upon the resonance 

(4 (b) 
FIGURE 12. (a)  Shock oscillation expected from resonance perturbations in the central 
region of the jet downstream of the shock. ( b )  Shock oscillation expected from perturbations 
passing the sonic line between the shock edge and sonic point of the resonator. 

oscillations shown in figure 12(a) .  The shock oscillations caused by sonic line 
oscillations shown in figure 12(b) will result in impressed downstream moving 
perturbations originating at the shock. 

When a perturbation Pa of circular frequency w corresponding to the A- 
component of equation (45) leaves the shock, a short time At will elapse before 
the radial component reaches the above-mentioned sonic line and thus the 
impressed perturbation 4, which is also of circular frequency w ,  is delayed 
compared with its origin. In  fact the impressed perturbation has the same nature 
as the normal A-component perturbation and their simultaneous values will be 
added. It is assumed that 4 is approximately proportional to Pa and accordingly 

(56) (%l1 = g(PA + %I1-*, = 9R4)t1-*t + s2(PA)11-zat + . * * 3  

where g is a positive constant. If (PA)[=,l = sin wtl, the total downstream moving 
perturbation will be 

PA, total, l=tl = (PA + <)t=ll = sin wt, + g sin w(t ,  - At) + g2 sin o(t l  - 2At) + . . . . 
After the time r ,  PA,,,,,,,,=,, will appear again as a downstream moving per- 
turbation but multiplied by the factor k :  

( ~ A ) , + T  = kPA, total, l=t1.  

I(Pa)t=l,+7/(PA)I=,lI = Ili'l ' 1 ,  

Here the damping by radiation of sound is disregarded. Amplification will occur 
if 

i.e. if )k(sinwt,+gsinw(t,-At)+g2sinw(tl-2At)+ ...)I > I sinot,I. 
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If k < 0 it is necessary that 

721 (n/o)(l+Bm) ( m =  0,172, ...), ( 5 7 a )  

and if k > 0, 7 N  (27T/u)(l+m) ( m = O 7 l 7 2 ,  ...). ( 5 7 b )  

Normally it is not possible to obtain the sign of equality in equations (57a7  b)  
and then, for example, pressure measurements at the resonator plane will show 
oscillations not of frequency w/2n but of frequency (%-)-I for k < 0 and 7-l for 

(c) k > 0 ,  m - 0  
v ,7-1 

7 2nlw 

m 

(d) K > O , m = l  
v m = 2  (27)-' 

7 2nlw 

FIGURE 13. Examples of pressure oscillations caused by a casual resonance perturbation 
sin wt (duration N 7 ) .  For convenience the curves are made for IRl = 1 and it is assumed 
that R is proportional to k. 

k > 0 (figure 13). However, practically it may be very difficult to determine 
anything but a dominating mean frequency urn, figure 7 ( a ) ,  given by 

urn = (%)- l ( l+  am) for k < 0, and v, = 7-1 (1 + m) for k > 0. 

If several resonance frequencies are possible according to equations (53 )  and 
( 5 4 ) ,  the one for which the total amplification is the strongest will dominate the 
perturbations. A rather small change in the position of the resonator may 
influence o, k, g and At sufficiently to cause a complete change of the dominating 
resonance frequency. 
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3.5. Example of calculation 
The theory for resonance in the Hartmann generator has been applied to the 
case of the Hartmann generator with 7.0 mm plane resonator for which the shock- 
resonator positions are given in figure 4. This figure, together with figure 9, 
supplies sufficient information to determine at any position of the resonator the 

k 

2 

1 

0 

- 1  

- 2  

FIGURE 14. Values of E ,  and k ,  computed for 7.0 mm plane resonator 
at  xreS = 14.8 mm ( z , ~  = 10.0 mm). 

0- 
10 15 

2, (mm) 2,- (=) 

FIGURE 15. (a )  Resonance frequencies w/2n for 7-0 mm plane resonator computed from 
equations (53) and (54). (21) Corresponding values of the amplification factor k.  
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values of MI,  dM,/dx, M,, a,/a,, a,/a2 and a. As the generator is supplied with 
atmospheric air y = 1.4. The stagnation sound velocity is a, = 345 mjsec. 

The values of the amplification factor Ic found from equations (53) and (54) 
are denoted kB and k ,  respectively. In  figure 14, k,  and Ic, are computed for the 
case zres = 14-8mm7 zsh = 10-0mm in the interval 4 < < 15. The points of 
intersection give the resonance frequencies for the shock. In  figure 15(a) these 
frequencies are given as functions of the resonator position and in figure 15 ( b )  the 
corresponding values of k are found. 

Hm 0 10 15 

50 r I 

20 

xres 

FIGURE 16. The reflexion time 7 

computed from equation (55) 
for 7.0 mm plane resonator. 

It is seen that IIcl  attains the largest value for the lowest resonance frequencies. 
The values of At and g from equation (56) cannot be determined from the general 
outline of the theory of impressed perturbation presented, and therefore a final 
determination of the dominating resonance frequency w is not yet possible. 

It is found experimentally that the dominating mean frequency v, at certain 
positions of the resonator jumps from one value to another (figure 7 (a ) )  which 
can be explained as shifts from one resonance frequency w/2n to another 
(figure 15(a) ) .  

Computation of 7 from equation (55 )  gives the curve shown in figure 16. 
As mentioned above (figure 13), 7 will always be a multiple of half the period of 
the mean frequency, and a jump of this frequency will occur with factors as 
Q ,  2, Q, 3, . . . . This conclusion is supported by the jumps in figure 7 (a)  except a t  
zres = 17-3 mm-the only resonator position at which two dominating frequencies 
are unmistakably superposed, 

If the measured positions for frequency jumps (figure 7 (a ) )  are used together 
with figures 15 (a)  and 16 an attempt can be made to compute the dominating 
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mean frequencies urn. This has been done in figure 17. The measured jump- 
factors were kept except at Xres = 17.3 mm, and it is then found that this point 
is a special one because the frequencies for 16.1 c Xres < 17.3mm and for 
17.3 < X r e S  < 18.lmm are caused by the same resonance curve (figure 15(a), 
curve 3, m = l ) ,  and no jump should be expected at all. Further for 

X r e s  < 17*3mm, 

the measured frequencies are higher than the computed ones and for 

X r e s  > 17*3mm, 

they are smaller than the computed ones. The computed value of T (equation 
( 5 5 ) )  cannot be expected to be exackspecially for the largest amplitudes of 
oscillation, but it is possible that at Xres = 17.3 mm the sign of the deviation just 
changes and this may explain the measured jump. 

The author wishes to express his gratitude to Prof. K. Refslund, Prof. R. E. H. 
Rasmussen and Mr H. Saustrup Kristensen for valuable discussions and support. 
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